



# RF Guided Munitions

Proposers' Day



Dr. James A. Freebersyser Program Manager, DARPA/ATO jfree@darpa.mil 703 696 2296



### **RF Guided Munitions Concept**



- Exploit dismounted, close-in attack scenario with small aperture, RF communications seeking weapon
  - If the dismount (SOF) can detect the emitter then the dismount can attack the (soft target) emitter with an organic weapon (e.g. 81 mm mortar)
- Create a passive, all-weather, and inexpensive precision RF seeker capability for multiple weapon types
  - Enable a suite of precision and area suppression weapons (ground-to-ground, ground-to-air, and air-to-ground) that home on RF communications energy all using similar RF seeker and guidance technology
- Deny enemy use of RF spectrum for communications or jamming
  - Counter enemy radar/IR/acoustic signals CCD efforts
  - Prevent technical surprise by highlighting vulnerability of US forces

DARPA Hard Technical Challenge: Quick and Precise Geo-Location of RF Emitters from a Single, High-Velocity, Small Weapon



### **DARPA Hard Technical Challenge**



Quick and Precise Geo-Location of RF Emitters from a Single, High-Velocity, Small Weapon

- Quick: Geo-location estimate must be fast enough (5 sec) to guide a mortar which has only 25-30 seconds of flight time
- Precise: Geo-location with an objective radius of an 81 mm mortar (20 m)
- RF Emitters: Target communications frequencies from 30 MHz to 3 GHz and multiple waveforms (7 waveform classes)
- Single: Emissions received by only a single platform (passive technique)
- → High-Velocity: Velocity of a mortar varies from 300 m/sec to 100 m/sec
- Small: e.g. 81 mm mortar form factor restricts antenna size and distance

#### **Recent Technology Enablers:**

- Organic detection (cueing) capability (e.g. Wolfpack, MANPACK ACTD, etc.)
- Small, lightweight, wideband, and inexpensive RF receivers
- Inexpensive memory and processors
- Proliferation of guided weapons (IR, laser, GPS, etc.)



### **Technical Challenges**





Cleared for Public Release. Distribution unlimited



### Geo-location Challenge – Be Green!



Angular precision of classic DF techniques is limited by  $\lambda$ /D, SNR, and channel mismatch which is unacceptable for low frequency emitters



### Dominated by channel mismatch which causes a biasing error

- New concepts will be needed to address this such as exploiting munitions characteristics (e.g. spinning)
- Dominated by imprecision in guidance (GPS/IMU error)
  - More than adequate for this application; further improvement is possible but may not be necessary



### **Design/Trade Space**



#### Cueing:

- The weapon receives cueing information from an external system such as Wolfpack, MANPACK ACTD, ACS, etc.
  - Utilize JASA emitter descriptors (carrier frequency, bandwidth, modulation, etc.) to future proof weapon versus template matching emitter waveforms

#### Geo-location

 Despite high SNR condition, the ability of classic DF techniques alone to work well enough to pass the Go/No-Go is questionable due to the limited aperture size/spacing and the (low) frequency range of interest

#### Maneuver toward target

Guidance/control techniques are well known (e.g. ERGM, PGMM, etc.)

#### Detonation

Utilize existing GOTS fuze technology to avoid requalification costs

#### System Integration

- Optimizing the relationship between geo-location accuracy and aerodynamic control authority while minimizing weight, volume, and cost and impact on weapon range and effects
  - Integrating the RF Guided Munition kit with the fuze is preferred versus modification of the tail assembly
  - Volume/length will need to be added to the weapon (mortar) for antennas, RF electronics, signal processing, and control surfaces in a manner that minimizes range loss
- Using GPS is possible but an IMU may be sufficiently capable while being cheaper than SASSM modules both add a precise targeting capability



### **Programmatics**



### **Acquisition Strategy**

- Potentially multiple performers for Go/No-Go's 1 and 2
  - Phases 1 and 2 are concurrent; continuation of Phase 2 contingent upon passing Go/No-Go 1
- ✔ If successful in Go/No-Go 1 and 2, potentially multiple performers move on to Go/No-Go 3 to add capability to different weapons pursuant to MOA with transition sponsor





### **RF Guided Munitions Phase 1**



### **Objective: Validate Geo-location Techniques (12/04)**

- Develop small, moving aperture geolocation techniques
- Develop techniques for the reduction of channel mismatch errors

#### Go/No-Go:

- Detect and geo-locate <u>a single RF source</u> in near-real time during captive carry on an aircraft flying a ballistic arc
  - 50% of the final geo-location estimates must be within 20 m of the target emitters at 30 MHz, 300 MHz, 1 GHz, and 3 GHz sources



### **RF Guided Munitions Phase 2**



## Objective: Validate Geolocation Performance Against Multiple Emitters in Multipath Environments (9/05)

- Develop multipath mitigation and multiple user discrimination techniques, such as subspace tracking techniques
- Develop mortar-sized electronics and guidance package

#### Go/No-Go:

- Detect and geolocate <u>a target RF waveform emitter</u> in real-time among multiple, similar RF waveform emitters (densities up to 1 emitter/km²) in a multipath environment after soft launch
  - 50% of mortar rounds must impact within 20 m of a target waveform emitter at 30 MHz, 300 MHz, 1 GHz, and 3 GHz
- Establish MOA with transition partner



### **RF Guided Munitions Phase 3**



### **Objective: System Integration and Test (4/07)**

- Demonstrate tube launch of an 81 mm RF seeking mortar round after receiving a field realizable cue from an external geolocation system
  - In conjunction with MOA transition partner

#### Go/No-Go:

- After receiving a field realizable cue from an external geolocation system, detect and geo-locate a target RF waveform emitter in real-time among multiple, similar RF waveform emitters (densities up to 1 emitter/km²) in a multi-path environment after tube launch using (inert) RF guided mortar
  - 50% of weapons must impact within 20 m of a target waveform emitter at 30 MHz, 300 MHz, 1 GHz, and 3 GHz

**Parameters May Vary Depending on MOA Transition Partner** 



### **Phase 3 Potential Weapons Hosts**



#### Ground-Ground

- Mortars (81/120mm)
- Artillery (105/120/155mm)
- ATGMs (Javelin, etc.)
- NetFires (PAM/LAM)

#### Air-Ground

- Hydra (70mm) rockets
- LOCASS
- Hellfire
- Maverick
- Kits for dumb bombs (JDAM, Paveway, SDB, etc.)
- BAT/Viper

#### Ground-Air

- Stinger

A Non-Exhaustive List - Insert Your Weapon of Interest If You Don't See It





### **Questions?**